Journal Article
Reduced water vapor transmission rates of low-temperature-processed and sol-gel-derived titanium oxide thin films on flexible substrates
Cited 14 time in
Share
Authors
Seonuk Park, Lae Ho Kim, Yong Jin Jeong, Kyunghun Kim, Min Park, Yonghwa Baek, Tae Kyu An, Sooji Nam, Jaeyoung Jang, Chan Eon Park
Sol-gel-derived, crack-free, and condensed TiOx thin films with improved barrier properties were successfully fabricated on polymeric substrates with a simple two-step heat treatment at low temperatures. To assess the barrier properties of the TiOx thin films, Ca corrosion tests were conducted and their water vapor transmission rates (WVTRs) were measured. We found that the two-step heat treatment (at 45 °C for 90 min and 110 °C for 60 min) produces a close-packed TiOx structure that substantially reduces the WVTRs of the coated polymeric substrates. The WVTRs of 86 nm thick TiOx thin films on polyethylene naphthalate (PEN) substrates at a relative humidity (RH) of 90% were found to be 0.133 g m-2 day-1 at 38 °C and 0.0387 g m-2 day-1 at 25 °C. In addition, the WVTR value of the TiOx thin films on PEN substrates are stable with respect to bending: it was found to increase by only ~13% after 100 repetitions of bending with a 20 mm radius.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.