Nowadays, image processing solution is used in many fields such as traffic information systems and illegal intrusion detection systems. Now, to assist with the control of camera-equipped devices, appropriate image processing techniques are needed for moving rather than fixed observers. For achieving this goal, an algorithm should derive the desired results quickly and accurately; thus, this paper considers two characteristics: functional performance (reliability) and temporal performance (efficiency). Reliability means how well the desired results can be achieved, and efficiency means how quickly the result can be calculated. This paper suggests an optimized real-time image algorithm based on the integration of the optical flow and Speeded-Up Robust Features (SURF) algorithms. This algorithm determines horizontal or vertical movement of the camera and then extracts its displacement. The proposed algorithm can be used to stabilize an Unmanned Aerial Vehicle (UAV) in situations where it is drifting due to inertia and external forces, like wind, in parallel. The proposed algorithm is efficient in achieving drift stabilization by movement detection; however, it is not appropriate for image processing in small UAVs. To solve this problem, this study proposes an image processing method that uses a high-performance computer.
KSP Keywords
Cloud server, Detection Systems(IDS), High performance computers, Image algorithm, Image processing(IP), Image processing method, Image processing techniques, Movement Detection, Optical flow, Real-time image, Small UAVs
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.