An early stage fire-sensing technique based on audible sound pressure spectra with multi-tone frequencies in a security space is proposed. The sound pressure spectra, which are formed by a sound source in a confined security space, are measured from microphones installed within the space. Because the sound velocity depends on the air temperature, changes in the sound pressure spectra are induced by changes in the air temperature around the fire within the space. These changes in the sound pressure spectra can be used for the early stage of a fire-sensing system. The sound-pressure levels (SPLs) in multi-tone sound frequencies with and without local fire generation were measured and analyzed. Various case studies were conducted using a finite element method simulation in echoic spaces, and the experimental results from an echoic cube space and an office room were analyzed. The proposed method for monitoring the audible sound pressure spectra with multi-tone frequencies was shown to be a good solution for an early fire-sensing system within various types of security spaces.
KSP Keywords
Air Temperature, Audible sound, Case studies, Finite Element(FE), Finite element method simulation, Finite-element method(FEM), Fire sensing, Multi-tone frequencies, Office room, Pressure level, Sensing system
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.