Image classification and extracting the characteristics of a tumor are the powerful tools in medical science. In case of breast cancer medical treatment, the breast cancer classification methods can be used to classify input images as normal and abnormal classes for better diagnoses and earlier detection with breast tumors. However, classification process can be challenging because of the existence of noise in the images, and complicated structures of the image. Manual classification of the images is time-consuming, and need to be done only by medical experts. Hence using an automated medical image classification tool is useful and necessary. In addition, having a better training data set directly affect the quality of classification process. In this paper, a method is proposed based on supervised learning and automatic thresholding for both generating better training data set, and more accurate classification of the mammogram images into Normal/Abnormal classes. The procedure consists of preprocessing, removing noise, elimination of unwanted objects, features extraction, and classification. A Support Vector Machine (SVM) is used as the supervised model in two phases which are testing and training. Intensity value, auto-correlation matrix value of detected corners, and, energy, are three extracted features used to train the SVM. Experimental results show this method classify images with more accuracy and less execution time compared to existing method.
KSP Keywords
Autocorrelation Matrix, Automatic thresholding, Breast cancer classification, Breast tumor, Classification method, Classification process, Classification tool, Data sets, Features Extraction, Harris Corner Detection, Mammogram Images
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.