ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article Extract Reliable Relations from Wikipedia Texts for Practical Ontology Construction
Cited 5 time in scopus Share share facebook twitter linkedin kakaostory
Authors
Jin-Xia Huang, Kyung Soon Lee, Key-Sun Choi, Young-Kil Kim
Issue Date
2016-11
Citation
Computacion y Sistemas, v.20, no.3, pp.467-476
ISSN
1405-5546
Publisher
CIC IPN
Language
English
Type
Journal Article
DOI
https://dx.doi.org/10.13053/CyS-20-3-2454
Abstract
A feature based relation classification approach is presented in this paper. We aimed to exact relation candidates from Wikipedia texts. A probabilistic and a semantic relatedness features are employed with other linguistic information for the purpose. The experiments show that, relation classification using the proposed relatedness features with surface information like word and part-of-speech tags is competitive with or even outperforms the one of using deep syntactic information. Meanwhile, an approach is proposed to distinguish reliable relation candidates from others, so that these reliable results can be accepted for knowledge building without human verification. The experiments show that, with the relation classification approach presented in this paper, more than 40% of the classification results are reliable, which means, at least 40% of the human and time costs can be saved in practice.
KSP Keywords
Classification approach, Human verification, Knowledge building, Linguistic information, Ontology construction, Part of Speech(POS), relation classification, semantic relatedness, syntactic information