Cu(In,Ga)Se2 absorbers with several different ratios of Ga/(Ga혻+혻In) were deposited by varying the Ga content using co-evaporation. The effects of Ga concentration at the surface of the CIGS on the Zn(O,S)/CIGS photovoltaic performance were investigated. Considering application as the bottom cell in a monolithic tandem structure, the optimum Ga/(Ga혻+혻In) ratio of approximately 0.26 led to the best efficiency of 14.56%, and to complete carrier collection at long wavelengths. In addition, the degradation rate in efficiency was lowest at an annealing temperature of 400혻°C. The reason for losses of other Ga/(Ga혻+혻In) ratios (0.33 and 0.36) at longer wavelengths might be due to interface recombination, possibly aided by conduction band offset with the Ga grading shape by varying the Ga concentration. The results suggested that the decrease in efficiency might be due to recombination at the interface between the Zn(O,S) and CIGS layers before/after annealing. The reverse bias effect during quantum efficiency measurements at long wavelengths was used to determine separate optical and electrical losses.
KSP Keywords
Annealing temperature, Conduction band offset, Electrical Losses, Ga concentration, Ga content, Ga grading, Interface recombination, Reverse bias, Tandem structure, Thin film solar cells, bottom cell
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.