ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article Solution-processed Indium-free ZnO/SnO2 Bilayer Heterostructures as a Low-temperature Route to High-performance Metal Oxide Thin-film Transistors with Excellent Stabilities
Cited 45 time in scopus Share share facebook twitter linkedin kakaostory
Authors
Sooji Nam, Jong-Heon Yang, Sung Haeng Cho, Ji Hun Choi, Oh-Sang Kwon, Eun-Suk Park, Su-Jae Lee, Kyoung-Ik Cho, Jaeyoung Jang, Chi-Sun Hwang
Issue Date
2016-11
Citation
Journal of Materials Chemistry C : Materials for Optical and Electronic Devices, v.4, no.47, pp.11298-11304
ISSN
2050-7526
Publisher
Royal Society of Chemistry (RSC)
Language
English
Type
Journal Article
DOI
https://dx.doi.org/10.1039/c6tc03977d
Abstract
The realization of high performance solution-processable metal oxide thin-film transistors (TFTs) with low annealing temperatures remains a challenge in the field of flexible and/or transparent electronics. Indium-based metal oxides are one of the most widely used materials as channel layers of metal oxide TFTs. However, the need for developing indium-free metal oxide materials has become urgent because of the high cost and limited supply of indium. Herein, we report high-performance solution-processed indium-free metal oxide TFTs prepared with low annealing temperatures by introducing ZnO/SnO2 bilayer heterostructures. After photo- and thermal annealing, ZnO/SnO2 bilayers form a unique nanostructure composed of three zones: Zn-only, Zn-Sn-mixed, and Sn-rich zones. The resulting ZnO/SnO2 TFTs exhibit outstanding mobility values as high as 15.4 cm2 V-1 s-1 with a low annealing temperature of 300 °C. These values are the highest yet measured among indium-free and solution-processed metal oxide TFTs prepared under similar annealing conditions. The ZnO/SnO2 TFTs also show remarkable outstanding operational stabilities under various external bias stresses. Their high performances and excellent stabilities can be attributed to the combinational effects of the highly conductive ultrathin Sn-rich channel and balanced carrier concentrations in the Zn-Sn-mixed region. We believe that our work provides a facile route to prepare inexpensive solution-processed electronic devices with earth-abundant materials such as backplane circuits for large-area and flexible displays.
KSP Keywords
Annealing conditions, Carrier concentration, Facile route, First Stokes(S1), High performance, Indium-free, Low annealing temperature, Metal-oxide(MOX), Oxide TFTs, Oxide material, Sn-rich