Nowadays, secret keys of networked devices are profoundly attacked by power analysis attacks, caused by the dramatic evolution of statistical analysis with a simple experimental setup. Recently, OpenSSL and CoreBitcoin running on Android and iOS have been broken by power analysis. Moreover, sensors and actuators can also be attacked thereby threatening user's privacy and security. To resolve these challenges, power-analysis-resistant implementations of cryptographic algorithms in networked devices have received a lot of attentions. Masking schemes have been developed to implement secure cryptographic algorithms against side-channel analysis (SCA) attacks. Technically, the firstorder masking method is vulnerable to the second order differential power analysis (2ODPA) attacks, but the current solutions against 2ODPA are expensive to be implemented. Moreover, worse performance will be shown if the cryptographic algorithms include boolean and arithmetic operations. In this paper, we propose a new countermeasure scheme to resist SCA attacks. Our scheme randomizes all the intermediate values of block cipher by encoding functions in the algorithm to lookup table and makes it resistant to power analysis attack. We apply our scheme to the block cipher algorithm, HIGHT. Our protected implementation of HIGHT takes only 1.79 times compared to the straightforward algorithm, and it needs 25 kbytes to store lookup tables in memory.
KSP Keywords
Arithmetic operations, Block cipher algorithm, Boolean and, Cryptographic Algorithms, Differential Power Analysis, Intermediate values, Look Up Table(LUT), Masking method, Networked devices, Protected implementation, Sensors and Actuators
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.