Advancement of silicon photonics technology can offer a new dimension in data communications with un-precedent bandwidth. Increasing the integration level in the silicon photonics is required to develop compact high-performance chip-level optical interconnects for future systems. Especially, monolithic integration of light source on a silicon wafer is important for future silicon photonic integrated circuits, since realizing a compact on-chip light source on a silicon wafer is a serious issue which impedes practical implementation of the silicon photonic interconnects. At present, due to the lack of a practical light source based on Group IV elements, flip chip-bonded or packaged lasers based on III-V semiconductor are usually being used as external light sources, to feed silicon modulators on SOI wafers to complete a photonic transmitter, except the reported silicon hybrid lasers monolithic-integrated on SOI wafers. To overcome above problem, we have proposed a compact on-chip light source, the directly monolithic-integrated VCSEL on a bulk silicon wafer (VCSEL-on-Si), based on the transplanted epitaxial film by substrate lift-off process and following device-fabrication on the bulk Si wafer. This can offer practical low-power-consumption light sources integrated on a silicon wafer, which can provide a complete chip-level I/O set when combined with monolithic-integrated vertical-illumination Ge-on-Si photodetectors on the same silicon wafer. In this work, we report the characterization of direct-modulation VCSELs-on-Si for {\\lambda} ~850 nm with CW optical output power > ~2 mW and the threshold current < ~3 mA, over 10 Gb/s operations. We also discuss about the thermal characteristics of the VCSELs-on-Si.
KSP Keywords
850 nm, Device Characterization, Direct modulation, Epitaxial film, External light, Ge-on-Si, Group IV elements, High performance, Hybrid laser, III-V Semiconductor, Monolithic Integration
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.