This paper presents a constraint method based on the kinematics to improve the accuracy of gesture recognition using a weighted dynamic time warping (DTW) algorithm. The traditional approaches of gesture recognition using 2D images are some limitations to detect the certain actions of human due to the lack of the full motion data. As the development of 3D depth sensors, it is possible for the gesture recognition technology to use the 3D motion data of human. In particular, the weighted DTW method is commonly used for the gesture recognition using 3D motion data since it can consider the sequential changes of the motion in a timeline. The weighted DTW, however, is an accuracy problem that is frequently identifying the false- positive and the true-negative about the complex gestures based on the timely stream of motions only. In this paper, we proposed the kinematic constraints generating the certain gestures so that we could improve the accuracy of gesture recognition using the weighted DTW algorithm. Finally, we carried out the experimental test with four types of gestures to evaluate the performance of the proposed kinematic constraints. The experimental results showed that the proposed method can enhance the precision of gesture detection compared to the standard weighted DTW algorithm even though the motion data captured by the 3D sensors include a lot of noises such as the occlusive movements and the ambiguous 3D measurements.
KSP Keywords
3D Measurement, 3D depth sensor, 3D motion, 3D sensors, Constraint method, DTW algorithm, Dynamic Time Warping, Experimental test, Gesture detection, Gesture recognition technology, Human gesture recognition
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.