In the TV white space, geolocation database techniques are utilized to manage white space devices (WSDs) or secondary users' operations over the digital terrestrial TV (DTT) receiver protection, in which the location-specific maximum power of WSDs is calculated based on location probability. The multiple antennas can also be utilized for WSDs to protect the DTT receivers and simultaneously increase the WSDs' system performance. However, due to the lack of channel information at the transmitter, conventional multiple-antenna-based cognitive radio (CR) techniques cannot be applied to WSD transceivers. In this paper, we develop the transmission strategies for multiple-antenna-based WSDs operating on the geolocation database framework. We analyze the achievable throughput when the WSD receiver exploits zero-forcing (ZF) linear processing under imperfect channel estimation and, based on the analytic results, propose a dynamic WSD transmission strategy in which the number of active transmit antennas and the associated antenna indexes are determined according to the WSD operational parameters obtained from the geolocation database.
KSP Keywords
Channel estimation(CE), Database framework, Geolocation Database, Imperfect channel estimation, Location probability, Probability-based, Secondary user(Su), System performance, TV White Spaces(TVWS), Zero forcing(ZF), achievable throughput
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.