Industrial systems currently include not only control processing with real-time operating system (RTOS) but also information processing with general-purpose operating system (GPOS). Multicore-based virtualization is an attractive option to provide consolidated environment when GPOS and RTOS are put in service on a single hardware platform. Researches on this technology have predominantly focused on the schedulability of RTOS virtual machines (VMs) by completely dedicated physical-CPUs (pCPUs) but have rarely considered parallelism or the throughput of the GPOS. However, it is also important that the multicore-based hypervisor adaptively selects pCPU assignment policy to efficiently manage resources in modern industrial systems. In this paper, we report our study on the effects of dynamic isolation when two mixed criticality systems are working on one platform. Based on our investigation of mutual interferences between RTOS VMs and GPOS VMs, we found explicit effects of dynamic isolation by special events. While maintaining low RTOS VMs scheduling latency, a hypervisor should manage pCPUs assignment by event-driven and threshold-based strategies to improve the throughput of GPOS VMs. Furthermore, we deal with implicit negative effects of dynamic isolation caused by the synchronization inside a GPOS VM, then propose a process of urgent boosting with dynamic isolation. All our methods are implemented in a real hypervisor, KVM. In experimental evaluation with benchmarks and an automotive digital cluster application, we analyzed that proposed dynamic isolation guarantees soft real-time operations for RTOS tasks while improving the throughput of GPOS tasks on a virtualized multicore system.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.