The objective of this study is to determine a tracking method using kernelized correlation filter based on object's appearance and motion model used to track multi-object. This system largely consists of 4 modules: motion model, background subtraction, hijacking handling and occlusion handling. Lab colour model is applied to subtract background, and histogram of oriented gradient (HoG) is used to extract object feature. If occlusion among objects occurs, we use a method that tracks again after removing the overlapping objects in consideration of the depth between objects: The head of the closer object is being taken from a camera positioned below the head of the distant object. Thus, among occluded tracking objects, we find that the most upper located object is considered as the furthest object in captured camera image. If hijacking among objects is occurred, it has been solved by removing the overlapping region of the bounding box between two objects that maintain their relative positions for a period of time. These results indicate that this method may allow a solution for tracking of multi-object to be more robust to real-world tracking environments.
KSP Keywords
Background subtraction(BS), Bounding Box, Camera Image, Hijacking handling, Kernelized correlation filter, Located object, Multi-object tracker, Object feature, Occlusion Handling, Real-world, Relative position
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.