During several decades, there have been many researches on approximation algorithms for constructing minimum routing cost tree (MRCT) that minimizes the sum of routing cost of all pairs in a tree topology. Existing algorithms have been mainly studied in the field of graph theory, thus it is difficult to apply them to multi-hop wireless ad-hoc networks due to the theoretical and centralized methodology. In addition, wireless ad-hoc network protocols restrict the maximum degree, which is the maximum number of children a parent may have, in order to prevent excessive concentration of traffic. However, this limitation has not been considered by any existing algorithms. In this paper, we define the degree constrained MRCT (DC-MRCT) problem and extract the characteristics of DC-MRCT by analyzing all possible tree topologies for the given number of nodes. Based on these characteristics that DC-MRCT has the minimum sum of tree level and the maximum square sum of subtree sizes, we propose a distributed DC-MRCT Formation (DC-MRCTF) algorithm that can be applicable to any type of wireless ad-hoc network protocols working on tree topology. Performance evaluation shows that DC-MRCTF gives noticeable benefit for up to 80% of individual communication pair compared with the representative tree formation algorithm in ZigBee as well as significantly reduces the sum of routing cost of all pairs regardless of network density.
KSP Keywords
Degree constrained, Distributed Formation, Maximum degree, Minimum routing cost tree, Multi-Hop, Network density, Performance evaluation, Tree formation, Wireless ad-hoc network, approximation algorithms, graph theory
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.