A novel approach to produce a large-area hierarchical structure array is presented. The method combines replica molding and atmospheric pressure plasma (APP) etching processes. Liquid blends consisting of siliconized silsesquioxane acrylate (Si-SSQA), polyethylene glycol dimethacrylate (PEGDMA), and photoinitiator are used as roughness formable materials during APP etching. Microstructures composed of the Si-SSQA/PEGDMA mixtures are fabricated by replica molding. Nanoroughness is realized on the microstructures by argon/oxygen (Ar/O2) APP etching in air. The nanoroughness on molded microstructures is efficiently controlled by varying the weight ratio of Si-SSQA to PEGDMA and the etching time. The hierarchical structures fabricated by combining replica molding and Ar/O2 APP etching show superhydrophilicity with a long-term stability, resulting in the formation of hydroxyl-terminated silicon oxide layer with the reorientation limit. On the other hand, the hierarchical structures treated with a perfluorinated self-assembled monolayer (SAM) show increased the water contact angles of up to 161째 depending on the morphology of the hierarchical structures. The increment of water contact angles is consistent with increment of the nano-/microroughness of hierarchical structures. A combinational approach of replica molding and atmospheric pressure plasma (APP) etching in air is presented to fabricate hierarchical structures. Using this approach, which offers potential for very large-area production, regularly arrayed hierarchical structures with superhydrophilicity or superhydrophobicity are successfully created on solid surfaces. Their surface properties are easily controlled by the etching time and the concentration of siliconized silsesquioxane acrylate.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.