Visual information understanding is known as one of the most difficult and challenging problems in the realization of machine intelligence. This paper presents research issues and overview of the current state of the art in the general flow of visual information understanding. In general, the first stage of the visual understanding starts from the object segmentation. Using the saliency map based on human visual attention model is one of the most promising methods for object segmentation. The next step is scene understanding by analyzing semantics between objects in a scene. This stage finds description of image data with a formatted text. The third step requires space understanding and context awareness using multi-view analysis. This step helps solving general occlusion problem very easily. The final stage is time series analysis of scenes and a space. After this stage, we can obtain visual information from a scene, a series of scenes, and space variations. Various technologies for visual understanding already have been tried and some of them are matured. Therefore, we need to leverage and integrate those techniques properly from the perspective of higher visual information understanding.
KSP Keywords
Challenging issues, Context awareness, Current state, First stage, Image data, Multi-view analysis, Object segmentation, Research Issues, Saliency Map, Scene Understanding, Time Series Analysis(TSA)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.