AsWireless Local Area Networks (WLANs) become denser and denser recently, the contention-based MAC protocol such as the IEEE 802.11 DCF, the de facto standard for the WLAN, should be modified to handle such dense WLANs. To this end, we consider a recently proposed novel MAC protocol called the Renewal Access Protocol (RAP) in this paper. With the RAP, we consider two strategies for resolving collisions efficiently and achieving high throughput performance in a super dense WLAN: strategies without and with grouping. First, we analyze the asymptotic behavior of the RAP itself (i.e., without grouping) as the number of terminals goes to infinity. We show that the RAP can achieve optimal throughput even in a super dense WLAN and the related optimal access probability of the RAP can be derived in a closed-form from the analysis. Second, we propose a new grouping strategy in the RAP and call it the grouped RAP (G-RAP). While a grouping strategy in the IEEE 802.11ah standard is based on time division, which can cause a waste of channel, our grouping strategy is based on transmission attempts, which does not waste channel resources. From the analysis we show that the G-RAP easily achieves the optimal network throughput performance for any group structure (i.e., unform group size and arbitrary group size) if terminals use the optimal access probability that we derive. Our analytical results are validated by simulation.
KSP Keywords
Access protocol, Contention-based, De facto standard, Dense WLANs, Grouping strategy, High throughput(HTP), IEEE 802.11 DCF, IEEE 802.11ah, Local Area Network(LAN), MAC protocol, Network throughput
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.