This paper proposes a novel hardware architecture for real-time face detection, which is efficient and suitable for embedded systems. The proposed architecture is based on AdaBoost learning algorithm with Haar-like features and it aims to apply face detection to a low-cost FPGA that can be applied to a legacy analog video camera as a target platform. We propose an efficient method to calculate the integral image using the cumulative line sum. We also suggest an alternative method to avoid division, which requires many operations to calculate the standard deviation. A detailed structure of system elements for image scale, integral image generator, and pipelined classifier that purposed to optimize the efficiency between the processing speed and the hardware resources is presented. The performance of the proposed architecture is described in comparison with the detection results of OpenCV using the same input images. For verification of the actual face detection on analog cameras, we designed an emulation platform using a low-cost Spartan-3 FPGA and then experimented the proposed architecture. The experimental results show that the processing time for face detection on analog video camera is 42 frames per second, which is about 3 times faster than previous works for low-cost face detection.
KSP Keywords
AdaBoost learning algorithm, Alternative method, Embedded system, Frames per second(FPS), Haar-Like features, Hardware Architecture, Hardware Resources, Image scale, Integral Image, Low-cost, Processing speed
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.