Unlike in the IS-95 based synchronous CDMA system, in the 3GPP's asynchronous WCDMA system, it is impossible for the network to estimate the round trip delay between the handover UE (user equipment) and the target base station (BS) before the handover execution, so the uplink handover search window size of the target BS becomes large. In order to get good link quality during handover execution, it is very important to reduce the uplink handover search time at the target BS. We propose an efficient uplink handover search scheme for an asynchronous WCDMA system. Average search time performance of the proposed scheme is analyzed for a fading channel environment. The effects of the non-coherent accumulation length of the search mode and that of the verification mode to the average search time performance are analyzed. The optimal threshold values of the search mode and the verification mode are investigated. The results analyzed in this paper may be useful for designing the uplink handover searcher of 3GPP's WCDMA base station.
KSP Keywords
CDMA systems, Coherent accumulation, Fading Channels, Link Quality, Non-coherent, Performance analysis, Search mode, Search time, Target Base Station(TBS), Threshold Value, optimal threshold
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.