ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article SnO/sub 2/ gas sensing array for combustible and explosive gas leakage recognition
Cited 57 time in scopus Share share facebook twitter linkedin kakaostory
Authors
Dae-Sik Lee, Duk-Dong Lee, Sang-Woo Ban, Minho Lee, Youn Tae Kim
Issue Date
2002-06
Citation
IEEE Sensors Journal, v.2, no.3, pp.140-149
ISSN
1530-437X
Publisher
IEEE
Language
English
Type
Journal Article
DOI
https://dx.doi.org/10.1109/JSEN.2002.800685
Abstract
A gas-sensing array with ten different SnO2 sensors was fabricated on a substrate for the purpose of recognizing various kinds and quantities of indoor combustible gas leakages, such as methane, propane, butane, LPG, and carbon monoxide, within their respective threshold limit value (TLV) and lower explosion limit (LEL) range. Nano-sized sensing materials with high surface areas were prepared by coprecipitating SnCl4 with Ca and Pt, while the sensing patterns of the SnO2 -based sensors were differentiated by utilizing different additives. The sensors in the sensor array were designed to produce a uniform thermal distribution along with a high and differentiated sensitivity and reproducibility for low concentrations below 100 ppm. Using the sensing signals of the array, an electronic nose system was then applied to classify and identify simple/mixed explosive gas leakages. A gas pattern recognizer was implemented using a neuro-fuzzy network and multi-layer neural network, including an error-back-propagation learning algorithm. Simulation and experimental results confirmed that the proposed gas recognition system was effective in identifying explosive and hazardous gas leakages. The electronic nose in conjunction with a neuro-fuzzy network was also implemented using a digital signal processor (DSP). © 2002 IEEE.
KSP Keywords
Back Propagation(BP), Back-propagation learning algorithm, Carbon monoxide(CO), Combustible gas, Digital signal processor(DSP), Electronic Nose(E-Nose), Electronic nose system, Explosive gas, Gas leakage, Gas sensing, Hazardous gas