This study characterizes an oxide etching process in a magnetically enhanced reactive ion etching (MERIE) reactor with a CHF3/CF4 gas chemistry. We use a statistical 24-1 experimental design plus one center point to characterize the relationships between the process factors and etch responses. The factors that we varied in the design include RF power, pressure, and gas composition, and the modeled etch responses were the etch rate, etch selectivity to TiN, and uniformity. The developed models produced 3D response plots. Etching of SiO2 mainly depends on F density and ion bombardment. SiO2 etch selectivity to TiN sensitively depends on the F density in the plasma and the effects of ion bombardment. The process conditions for a high etch selectivity are a 0.3 to 0.5 CF4 flow ratio and a ??600 V to ??650 V DC bias voltage according to the process pressure in our experiment. Etching uniformity was improved with an increase in the CF4 flow ratio in the gas mixture, an increase in the source power, and a higher pressure. Our characterization of via etching in a CHF3/CF4 MERIE using neural networks was successful, economical, and effective. The results provide highly valuable information about etching mechanisms and optimum etching conditions.
KSP Keywords
Center point, DC bias voltage, Etch rates, Etch selectivity, Etching conditions, Etching process, Experimental Design, Gas mixture, Oxide etching, Process conditions, Process factors
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.