A porous membrane filter is one of the key components for sample preparation in lab-on-a-chip applications. However, most of the membranes reported to date have only been used for size-based separation since it is difficult to provide functionality to the membrane or improve the performance of the membrane. In this work, as a method to functionalize the membrane filter, controlling the shape of the membrane pores is suggested, and a convenient and mass-producible fabrication method is provided. With the proposed method, membrane filters with round, conical and funnel shape pores were successfully fabricated, and we demonstrated that the sidewall slope of the conical shape pores could be precisely controlled. To verify that the membrane filter can be functionalized by controlled pore shape, we investigated filtration and trapping performance of the membrane filter with conical shape pores. In a filtration test of 1000 cancer cells (MCF-7, a breast cancer cell line) spiked in phosphate buffered saline (PBS) solution, 77% of the total cancer cells were retained on the membrane, and each cell from among 99.3% of the retained cells was automatically isolated in a single conical pore during the filtration process. Thanks to its engineered pore shape, trapping ability of the membrane with conical pores is dramatically improved. Microparticles trapped in the conical pores maintain their locations without any losses even at a more than 30 times faster external flow rate com-pared with those mounted on conventional cylindrical pores. Also, 78% of the cells trapped in the conical pores withstand an external flow of over 300 μl min-1 whereas only 18% of the cells trapped in the cylindrical pores remain on the membrane after 120 μl min-1 of an external flow is applied.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.