In traditional massive content distribution with multiple sessions, the sessions form separate overlay networks and operate independently, where some sessions may suffer from insufficient resources even though other sessions have excessive resources. To cope with this problem, we consider the universal swarming approach, which allows multiple sessions to cooperate with each other. We formulate the problem of finding the optimal resource allocation to maximize the sum of the session utilities and present a subgradient algorithm which converges to the optimal solution in the time-average sense. The solution involves an NP-hard subproblem of finding a minimum-cost Steiner tree. We cope with this difficulty by using a column generation method, which reduces the number of Steiner-tree computations. Furthermore, we allow the use of approximate solutions to the Steiner-tree subproblem. We show that the approximation ratio to the overall problem turns out to be no less than the reciprocal of the approximation ratio to the Steiner-tree subproblem. Simulation results demonstrate that universal swarming improves the performance of resource-poor sessions with negligible impact to resource-rich sessions. The proposed approach and algorithm are expected to be useful for infrastructure-based content distribution networks with long-lasting sessions and relatively stable network environment.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.