ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article HMM에 기반한 한국어 개체명 인식
Cited - time in scopus Share share facebook twitter linkedin kakaostory
Authors
황이규, 윤보현
Issue Date
2003-04
Citation
정보처리학회논문지 B, v.10B, no.2, pp.229-236
ISSN
1598-284X
Publisher
한국정보처리학회 (KIPS)
Language
Korean
Type
Journal Article
Abstract
개체명 인식은 질의응답 시스템이나 정보 추출 시스템에서 필수 불가결한 과정이다. 이 논문에서는 HMM 기반의 복합 명사 구성 원리를 이용한 한국어 개체명 인식 방법에 대해 설명한다. 한국어에서 많은 개체명들이 하나 이상의 단어로 구성되어 있다. 또한, 하나의 개체명을 구성하는 단어들 사이와 개체명과 개체명 주위의 단어 사이에도 문맥적 관계를 가지고 있다. 본 논문에서는 단어들을 개체명 독립 단어, 개체명 구성 단어, 개체명 인접 단어로 분류하고, 개체명 관련 단어 유형과 품사를 기반으로 HMM을 학습하였다. 본 논문에서 제안하는 개체명 인식 시스템은 가변길이의 개체명을 인식하기 위해 트라이그램 모델을 사용하였다. 트라이그램 모델을 이용한 HMM은 데이터 부족 문제를 가지고 있으며, 이를 해결하기 위해 다단계 백-오프를 이용하였다. 경제 분야 신문기사를 이용한 실험 결과 F-measure 97.6%의 결과를 얻었다.
KSP Keywords
F-measure