Journal Article
Novel and simple model of 10-Gb/s electroabsorption modulated lasers and its experimental validation of transmission performance due to overshoot of optical signals
We have experimentally and theoretically investigated the transmission performance of 10-Gb/s electroabsorption modulated lasers (EMLs) due to the overshoot of optical pulses. When a highly negative bias voltage is applied to EMLs, the overshoot becomes larger due to nonlinear transfer curves of EMLs. In order to further understand the overshoot effect of optical pulses from EMLs on transmission performance, we propose a novel and simple EML model based on the frequency response (magnitude and phase) and the transfer curves (P-V and 慣-V) of EMLs. Although the model does not solve the rate equations and the wave equations, it can accurately predict output pulse shapes and the frequency chirp as well as the transmission performance with reducing simulation time. Using the EML model, we can calculate the overshoot and dispersion power penalty due to modulation bandwidth and group delay difference in 10-Gb/s EMLs. Our results suggest that the overshoot should be considered to accurately predict the transmission performance of 10-Gb/s EMLs.
KSP Keywords
Dispersion power penalty, Frequency response(FreRes), Group delay difference, Magnitude and phase, Modulation bandwidth, Negative bias voltage, Optical pulse, Overshoot effect, Pulse shape, Rate equations, experimental validation
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.