We report the electrical characteristics of backchannel etch (BCE) metal-oxide-semiconductor thin-film transistor (TFT) comprised of aluminum-doped tin-zinc-indium oxide (ATZIO). It has high etch selectivity in wet chemical etchants, which consist of H3PO4, CH3COOH, and HNO3. This is contrary to the conventional metal-oxide-semiconductors of indium-gallium-zinc oxides, which are highly soluble in the acidic chemicals. As a result, no etch stop layer is needed to protect the backchannel from the wet etchant damage during the source and drain patterning in the bottom-gate-staggered TFT structure. This provides the possibility of oxide TFT fabrication process made as simple as that of the current amorphous silicon TFT using three or four photomasks with short channel length and less parasitic capacitance. The electrical characteristics of our ATZIO BCE-TFTs have the mobility of 21.4 cm2/Vs , subthreshold swing (S.S) of 0.11 V/decade, and threshold voltage of 0.8 V. In spite of the BCE structure, they have excellent stability against bias temperature stress, which shows the threshold voltage shifts of +0.75 V and-0.51 V under the prolonged positive (+20 V) and negative (-20 V) gate bias stresses for 10 000 s at 60 °C, respectively.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.