In this paper, we present a concave-patterned TiN/PECVD-Si3N4 /TiN diaphragm micro-electro-mechanical system (MEMS) acoustic sensor based on a polyimide sacrificial layer. The use of the spin-coated polyimide eliminates the additional Al pad process of conventional device fabrication due to simple O2 ashing to release the sacrificial layer, simplifying the photolithography process. Also, to adjust the acoustic sensor for a bottom-ported package, its diaphragm was implemented to be placed over the back-plate. The TiN/PECVD-Si3N4/TiN multi-layer diaphragm was formed with the stress controllability of PECVD-Si3N4 from -162 MPa to +109 MPa. Furthermore, a parallel-plate capacitance model on the basis of an approximately linearized electric field method (ALEM) is proposed to evaluate the capacitance of two plates. The modelled capacitance showed less than 3.7% error in FEM simulation, demonstrating the validity of the proposed model. At a zero-bias voltage, the effective intrinsic and parasitic capacitances in the active area were 1.656 pF and 0.388 pF, respectively. Moreover, with a pull-in analytical model by using ALEM, the effective tensile stress for the diaphragm was extracted to +31.5 MPa, where the pull-in voltage was 10.7 V. In succession, the dynamic response for the open-circuit sensitivity was modelled with an equivalent circuit model based on lumped parameters. The measured open-circuit sensitivity of -45.1 dBV Pa-1 at 1 kHz with a bias of 9.6 V was only slightly different from the modelled sensitivity of -45.0 dBV Pa-1. Thus, these results demonstrate that the proposed sensor is suitable for a front-end voice capture module.
KSP Keywords
Acoustic Sensor, Active area, Analytical model, Back-plate, Capacitance model, Capture module, Dynamic responses, Electric field method, FEM simulation, Front-End, Lumped parameters
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.