Current end-to-end Internet congestion control under tail-drop (TD) queue management experiences performance degradations such as multiple packet losses, high queueing delay and low link utilization. In this paper, we review recently proposed active queue management (AQM) algorithms for supporting end-to-end transmission control protocol (TCP) congestion control. We focus recently developed control theoretic design and analysis method for the AQM based TCP congestion control dynamics. In this context, we analyze the problems of existing AQM proposals in which congestion is detected and controlled reactively based on current and/or past congestion. Then we argue that AQM based TCP congestion control should be adaptive to the dynamically changing traffic situation in order to detect, control and avoid the current and the incipient congestion proactively. Finally, we survey two adaptive and proactive AQM algorithms, PID-controller and Pro-Active Queue Management (PAQM), designed using classical proportional-integral-derivative (PID) feedback control to overcome the reactive congestion control dynamics of existing AQM algorithms. A comparative study of these AQM algorithms with existing AQM algorithms is given. A simulation study under a wide range of realistic traffic conditions suggests that PID-controller and PAQM outperform other AQM algorithms such as random early detection (RED) [Floyd and Jacobson, 18] and proportional-integral (PI) controller [Hollot et al., 24].
KSP Keywords
Control current, Design and analysis method, End to End(E2E), Feedback Control, Internet congestion control, PID-controller, Pro-active, Proportional-integral (PI) controller, Queueing delay, Random early detection(RED), Simulation study
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.