A still or video camera based on a Bayer-type image sensor is inherently an under-sampled system in terms of color pixel reconstruction. Accurate reconstruction of green channel information and minimization of color artifacts are two primary goals in the color demosaicing methods. Unsuccessful demosaicing methods usually come up with large color artifacts, particularly at image areas with fine details. In the proposed method, we first estimate green values at each chrominance pixel position by utilizing cubic convolution interpolation along the direction of the smallest gradient magnitude. We have defined a diamond shaped interpolation kernel and four different gradient directions to facilitate accurate reconstruction of the green channel. Reconstruction of chrominance channels comprises spectral correlation based averaging of neighboring chrominance pixels and a proposed sequential filtering on the reconstructed chrominance channels. Due to the introduction of sequential filtering stage, conventional quantitative image quality measures such as PSNR or PESNR are not high but we found that the visual quality as observed from the human visual system is more natural and comfortably vivid reconstruction can be obtained. Moreover, the proposed demosaicing method comprises additions and subtractions for the most part, which makes its implementation more tractable.
KSP Keywords
Bayer Pattern, Color Artifacts, Color demosaicing, Cubic convolution, Fine details, Gradient Magnitude, Gradient direction, Green Channel, Human Visual System(HVS), Image Sensor, Image quality measures
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.