We propose an output signal selection method for the directional diversity in VSB receiver which is to improve the reception performance of VSB system in severe Rayleigh fading channel. The VSB system has only about 0.3% of known training signal for the receiver in a data field and the reception performance of VSB receiver is degraded significantly when there are near-0 dB ghosts in received signal. To overcome this problem, the directional diversity is suggested. In directional diversity the selection of an output signal with best channel condition in point of VSB equalizer is very important to improve VSB reception performance. For the selection of the optimal signal, we extracted channel profiles in time domain for all the signals by correlating the PN511 sequence in VSB field sync and selected one signal by comparing the channel profiles. The simulation results show that the proposed method selects a signal with the best channel condition among the signals, so the reception performance of the VSB system can be improved in severe Rayleigh channels.
KSP Keywords
Data field, Directional diversity, Rayleigh Fading Channel, Rayleigh channels, Selection method, Signal selection, Training signal, channel condition, simulation results, time-domain
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.