This paper presents a general-purpose design scheme of a filter bank (FB)창?궗"based radio frequency (RF) transceiver that operates across the entire ultra-high frequency (UHF) TV band from 470 MHz to 698 MHz and complies with the TV white space (TVWS) regulatory requirements. To this end, an intermediate frequency (IF) band-pass filter (BPF) with a sharp skirt characteristic is considered as a solution for handling the incoming signals from a baseband modem. Specifically, an FB-based BPF structure with four ceramic resonator filters that effectively rejects unwanted signals is proposed to extract a desired signal in the TV band. Achievable data rates of a cognitive radio system (CRS) employing the proposed FBbased RF transceiver at the application layer are investigated in both wired and wireless environments. The service coverage of the CRS network is measured according to several modulation and coding schemes (MCSs) of the CRS. The results show that the coverage of a wireless network in a nearly open area can be extended by more than 9.3 km in the TVWS. Experimental results also confirm that the proposed FB-based RF transceiver is adequate for utilization in TVWS applications.
KSP Keywords
Band-Pass Filter(BPF), Baseband Modem, Ceramic resonator, Cognitive Radio System, Design Scheme, Filter bank, High frequency(HF), RF Transceiver, Radio frequency (rf), TV Band, TV White Spaces(TVWS)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.