ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article IFSA 알고리즘을 이용한 유전자 상호 관계 분석
Cited - time in scopus Download 11 time Share share facebook twitter linkedin kakaostory
Authors
김혜진, 최승진, 방승양
Issue Date
2006-04
Citation
정보과학회논문지 : 시스템 및 이론, v.33, no.3-4, pp.157-165
ISSN
1229-683X
Publisher
한국정보과학회 (KIISE)
Language
Korean
Type
Journal Article
Project Code
05MI1400, Embedded Component Technology and Standardization for URC, Young-Jo Cho
Abstract
세포는 환경 변화 및 자극으로부터 자신을 보호하기 위해 유전자가 발현하여 생명을 유지 시스템을 갖고 있다. 유전자의 발현은 비정상적인 상태의 세포를 환경을 조절, 변화시켜 정상으로 바꾸기 위한 기능, 발달단계에 필요한 기능 등 생명현상에 필요한 특수 역할을 수행한다. 따라서 각 유전자의 기능을 아는 것은 생물학적으로 상당히 의미 있는 일이다. 본 논문에서는 유전자 기능을 알아보기 위해 발현 패턴을 통해 같을 때, 유사한 형태 혹은 시차를 갖고 동일한 형태로 발현하는 유전자들은 같은 기능을 한다는 가정을 하였다. 이 가정에 기반하여 각 유전자들을 기능에 따라 분류하였다. (1) IFSA선형 모델을 적용하여 데이타를 잘 나타내 줄 수 있는 특징 패턴을 찾았으며 (2) 이 특징 패턴으로부터 본 논문에서 제안한 Membership Scoring Function을 이용하여 유전자를 필터링(filtering) 하였다. 이 유전자들은 기존의 ICA(Independent Component Analysis) 방법에서 보다 IFSA 방법이 더 효과적으로 각 기능에 따른 유전자 그룹을 찾아내줌을 GO(Gene Ontology)에서 확인할 수 있었다. 이는 시차 혹은 위상 변화에 상관없이 데이타를 잘 나타낼 수 있는 IFSA의 특성이, ICA보다 생물학적인 변수를 더 고려해 줄 수 있기 때문이라고 생각된다[1]. 이 논문의 또 다른 주요 작업은 유전자의 상호작용 관계로부터 유전자 네트웍을 얻어내는 것이다. 유전자 네트웍은 같은 그룹 내에서 유전자간의 상관 계수를 구하고 가장 높은 상관도를 보이는 유전자쌍을 연결시켜 얻게되었다. 이 네트웍 역시 GO 해석에서 그 유효성을 확인하였다.
KSP Keywords
Gene ontology, Independent Component analysis