For the past ten years, Gaussian process has become increasingly popular for modeling numerous inferences and reasoning solutions due to the robustness and dynamic features. Particularly concerning regression and classification data, the combination of Gaussian process and Bayesian learning is considered to be one of the most appropriate supervised learning approaches in terms of accuracy and tractability. However, due to the high complexity in computation and data storage, Gaussian process performs poorly when processing large input dataset. Because of the limitation, this method is ill-equipped to deal with the large-scale system that requires reasonable precision and fast reaction rate. To improve the drawback, our research focuses on a comprehensive analysis of Gaussian process performance issues, highlighting ways to drastically reduce the complexity of hyper-parameter learning and training phases, which could be applicable in predicting the CPU utilization in the demonstrated application. In fact, the purpose of this application is to save the energy by distributively engaging the Gaussian process regression to monitor and predict the status of each computing node. Subsequently, a migration mechanism is applied to migrate the system-level processes between multi-core and turn off the idle one in order to reduce the power consumption while still maintaining the overall performance.
KSP Keywords
Bayesian learning, CPU Utilization, Computing Node, Dynamic features, Energy efficiency, Fast reaction, Gaussian Process(GP), Gaussian Process Regression(GPR), Large-scale systems, Learning approach, Learning training
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.