Content filtering-based Intrusion Detection Systems have been widely deployed in enterprise networks, and have become a standard measure to protect networks and network users from cyber attacks. Although several solutions have been proposed recently, finding an efficient solution is considered as a difficult problem due to the limitations in resources such as a small memory size, as well as the growing link speed. In this paper, we present a novel content filtering technique called Table-driven Bottom-up Tree (TBT), which was designed i) to fully exploit hardware parallelism to achieve real-time packet inspection, ii) to require a small memory for storing signatures, iii) to be flexible in modifying the signature database, and iv) to support complex signature representation such as regular expressions. We configured TBT considering the hardware specifications and limitations, and implemented it using a FPGA. Simulation based performance evaluations showed that the proposed technique used only 350 Kilobytes of memory for storing the latest version of SNORT rule consisting of 2770 signatures. In addition, unlike many other hardware-based solutions, modification to signature database does not require hardware re-compilation in TBT. Copyright 2007 ACM.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.