ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article 군집화와 유전 알고리즘을 이용한 거친-섬세한 분류기 앙상블 선택
Cited - time in scopus Share share facebook twitter linkedin kakaostory
Authors
김영원, 오일석
Issue Date
2007-09
Citation
정보과학회논문지 : 소프트웨어 및 응용, v.34, no.9, pp.857-868
ISSN
1229-6848
Publisher
한국정보과학회 (KIISE)
Language
Korean
Type
Journal Article
Abstract
분류기 앙상블은 분류기 간에 상호 보완성을 갖추어 높은 인식 성능을 보여야 하며, 크기가 작아 계산 효율이 좋아야 한다. 이 논문은 이러한 목적을 달성하기 위한 거친-섬세한 (coarse-to-fine) 단계를 밟는 분류기 앙상블 선택 방법을 제안한다. 이 방법이 성공하기 위해서는 초기 분류기 풀 (pool)이 충분히 다양해야 한다. 이 논문에서는 여러 개의 서로 다른 분류 알고리즘과 아주 많은 수의 특징 부분집합을 결합하여 충분히 큰 분류기 풀을 생성한다. 거친 선택 단계에서는 분류기 풀의 크기를 적절하게 줄이는 것이 목적이다. 분류기 군집화 알고리즘을 사용하여 다양성을 최소로 희생하는 조건하에 분류기 풀의 크기를 줄인다. 섬세한 선택에서는 유전 알고리즘을 이용하여 최적의 앙상블을 찾는다. 또한 탐색 성능이 개선된 혼합 유전 알고리즘을 제안한다. 널리 사용되는 필기 숫자 데이타베이스를 이용하여 기존의 단일 단계 방법과 제안한 두 단계 방법의 성능을 비교한 결과 제안한 알고리즘이 우수함을 입증하였다.
KSP Keywords
coarse-to-fine