Journal of the Korean Physical Society, v.51, pp.S170-S173
ISSN
0374-4884
Publisher
한국물리학회 (KPS)
Language
English
Type
Journal Article
Abstract
A single ZnO nanowire device was fabricated by electron-beam lithography, and its current-voltage characteristics were recorded while varying the atmospheric pressure to test possible applications as a chemical gas sensor. Vertically well aligned ZnO nanowires were grown on GaN epilayer on c-plane sapphire via a vapor-liquid-solid (VLS) process by introducing an Au thin film (3 nm) as a catalyst. Semiconducting nanowire devices were fabricated by using photolithography and e-beam lithography, and their electrical properties were studied. To realize reliable device operation, which is a key factor for a chemical sensor, the contact resistance should be optimized. Here, we studied the contact-resistance problem by using a scanning probe microscopic tool to characterize surface-potential behaviors. To overcome the contact-resistance problem, a post thermal process was adapted to the nanowire device. Atmospheric-pressure-dependent electrical properties of the ZnO nanowire device were studied for chemical-sensor application.
KSP Keywords
Au thin film, Chemical gas sensor, Chemical sensors, Contact resistance(73.40.Cg), E-beam Lithography, GaN epilayer, Key factor, Scanning probe, Semiconducting nanowire, Surface Potential, Thermal process
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.