08MB1900, Development of CMOS based MEMS processed multi-functional sensor for ubiquitous environment,
Chang Auck Choi
Abstract
A novel sensing gap reconfigurable capacitive type MEMS accelerometer with high sensitivity and high resolution is designed, fabricated and characterized. The present MEMS accelerometer is fabricated by using simple SOI processDRIE. However, conventional Silicon on Insulator (SOI) process is hard to make patterns which is smaller than 1 um because of its high aspect ratio and ICP etching error such as loading-effect and under-cutting. So we have adopted a simple idea of the MEMS actuator-stopper system to modulate the sensing gap precisely. Unlike previous capacitive type MEMS accelerometer which has an anchored reference comb electrodes, the proposed accelerometer has a movable reference comb with MEMS electrostatic actuators and stoppers. By simply applying DC bias to MEMS actuators, the reference comb electrode is moved to the sensing comb structure until the actuators contacting the stoppers. The gap between sensing comb fingers and reference comb fingers is reduced by the gap between actuators and stoppers. In this paper, the initial sensing gap is 1.5um and it reduced to 0.5um, when working. Then, the overall capacitance and sensitivity is simple increased. The capacitance is increased from 3.47pF at the OFF state to 5.35pF at the ON state by applying 2V DC bias.
KSP Keywords
Capacitive-type, Electrostatic actuators, High Sensitivity, High aspect ratio, High-resolution, ICP etching, MEMS accelerometers, MEMS actuators, Off-State, Silicon On Insulator(SOI), Stopper system
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.