07MD2400, Development of Indoor/Outdoor Seamless Positioning Technology,
Wan Sik Choi
Abstract
This paper describes an IIR/FIR fusion filter for a nonlinear system, and analyzes the stability of the fusion filter. The fusion filter is applied to INS/GPS integrated system, and the performance is verified by simulation and experiment. In the fusion filter, an IIR-type filter (SPKF) and FIR-type filter (MRHKF filter) are processed independently, then the two filters are merged using the mixing probability calculated using the residuals and residual covariance information of the two filters. The merits of the SPKF and the MRHKF filter are embossed and the demerits of the filters are diminished via the filter fusion. Consequently, the proposed fusion filter has robustness against to model uncertainty, temporary disturbing noise, large initial estimation error, etc. The stability of the fusion filter is verified by showing the closeness of the states of the two sub filters in the mixing/redistribution process and the upper bound of the error covariance matrices. This fusion filter is applied into INS/GPS integrated system, and important factors for filter processing are presented. The performance of the INS/GPS integrated system designed using the fusion filter is verified by simulation under various error environments and is confirmed by experiment.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.