The online collection of coarse-grained traffic information, such as the total number of flows, is gaining in importance due to a wide range of applications, such as congestion control and network security. In this paper, we focus on an active queue management scheme called SRED since it estimates the number of active flows and uses the quantity to indicate the level of congestion. However, SRED has several limitations, such as instability in estimating the number of active flows and underestimation of active flows in the presence of non-responsive traffic We present a Markov model to examine the capability of SRED in estimating the number of flows. We show how the SRED cache hit rate can be used to quantify the number of active flows. We then propose a modified SRED scheme, called hash-based two-level caching (HaTCh), which uses hashing and a two-level caching mechanism to accurately estimate the number of active flows under various workloads. Simulation results indicate that the proposed scheme provides a more accurate estimation of the number of active flows than SRED, stabilizes the estimation with respect to workload fluctuations, and prevents performance degradation by efficiently isolating non-responsive flows.
KSP Keywords
Cache hit rate, Caching Mechanism, Congestion control, High speed network, Markov model, Non-responsive traffic, Two-level, Wide range, accurate estimation, active queue management, coarse-grained
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.