The development of an integrated and personalized healthcare system is becoming an important issue in the modern healthcare industry. One of main objectives of integrated healthcare system is to effectively manage patients having chronic diseases that require long term care and its temporal information plays an important role to manage the statuses of diseases. Thus, a patient having chronic disease needs to visit the hospital periodically, which generates large volume of medical examination data. Among the various chronic diseases, metabolic syndrome (MS) has become a popular chronic disease in many countries. There have been efforts to develop an MS risk quantification and prediction model and to integrate it into personalized healthcare system, so as to predict the risk of having MS in the future. However, the development of methods for temporal progress management of metabolic syndrome has not been widely investigated. This paper proposes a method for identifying the temporal progress of MS patients' status based on the chronological clustering methodology. To investigate the temporal changes of disease status, we develop a chronological distance variance model that quantifies the difference of areal similarity degree (ASD) values between estimated and examined results of MS risk factors. We evaluate the clinical effectiveness of the temporal progress model by using sample subjects' examination results that have been measured for 10 years. We further elaborate the accuracy of the proposed temporal progress estimation method by using multiple linear regression method. Then, we develop a tier-based patients' MS status classification based on the chronological distance variance. The tier classification is based on the sensitivity for temporal change of MS status according to different values of control range of chronological distance variance. Our proposed temporal change identification method and patients' tier classification are expected to be incorporated with the integrated healthcare systems to help physicians with identifying the temporal progress of MS patients' health status and MS patients with self-management at home environments.
KSP Keywords
Chronological clustering, Clinical Decision Support System(CDSS), Clustering methodology, Control range, Decision Support System(DSS), Estimation method, Healthcare Systems, Healthcare industry, Identification method, Linear regression method, Medical examination
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.