07MT2400, OTH-based 40G Multi-service Transmission Technology,
Ko Je Soo
Abstract
This paper proposes an open-loop clock recovery circuit (CRC) using two high-Q dielectric resonator (DR) filters for 39.8 Gb/s and 42.8 Gb/s dual-mode operation. The DR filters are fabricated to obtain high Q-values of approximately 950 at the 40 GHz band and to suppress spurious resonant modes up to 45 GHz. The CRC is implemented in a compact module by integrating the DR filters with other circuits in the CRC. The peak-to-peak and RMS jitter values of the clock signals recovered from 39.8 Gb/s and 42.8 Gb/s pseudo-random binary sequence (PRBS) data with a word length of 231-1 are less than 2.0 ps and 0.3 ps, respectively. The peak-to-peak amplitudes of the recovered clocks are quite stable and within the range of 2.5 V to 2.7 V, even when the input data signals vary from 150 mV to 500 mV. Error-free operation of the 40 Gb/s-class optical receiver with the dual-mode CRC is confirmed at both 39.8 Gb/s and 42.8 Gb/s data rates.
KSP Keywords
40 gb/s, 45 GHz, Clock recovery(CR), Dielectric resonator(DR), GHz band, High Q, Optical receiver, Pseudo Random Binary Sequence(PRBS), Resonant modes, Word-length, data rate
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.