A Cyber Physical System (CPS) is an autonomous embedded system based on high reliability with real-time control of distributed physical systems through wired/wireless networks. There is usually large volume of data which needs to be delivered to right places at the right time. In addition, large number of controllers in the automation and control systems are usually distributed which increases the complexity that there needs to be more point-to-point Ethernet-connections in the network. Because the controllers in the network may share control data and interact with each other from different communication protocols, including higher level operator systems. The interdependencies between these nodes may potentially create a complex architecture of the network in the distributed system especially if the point-to-point connection needs to be established. Publish-subscribe model shows some appealing properties, such as connectionless and multicast, that can be used to reduce some of the visible complexity in the software systems. Data distribution middleware for CPS should be based on a data-centric approach and guarantee real-time performance. In this regard, OMG's DDS is the best proximity middleware. RTPS (Real-Time Publish/Subscribe) is proposed for real-time service discovery in DDS. However, legacy discovery protocols cannot completely support the CPS system with a large-scale network (approx. 100,000 entities) like a warship, because service discovery messages are proportional to the square of the number of participants in RTPS. This paper proposes a scalable and fast service discovery protocol with improved discovery time for large-scale cyber physical systems based on the boot-strap algorithm and adaptive PDP message period. As a result, the proposed protocol improves reliability and real-time for service discovery in cyber physical systems. In this paper, mathematical analysis and test-bed experiments are conducted to evaluate the performance of the proposed protocol. Consequently, mathematical analysis and test-bed experiments provide almost identical results. The performance results prove that our protocol works to scale for large-scale CPS networks by minimizing the discovery time as well as traffic simultaneously.
KSP Keywords
Automation and Control, Complex architecture, Data Distribution, Data-centric approach, Discovery time, Distributed System(DS), High Reliability, Large-Scale CPS, Large-scale network, Point-to-Point, Publish-subscribe(P-S)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.