Computing and Informatics, v.32, no.6, pp.1212-1228
ISSN
1335-9150
Publisher
Slovak Academy of Sciences
Language
English
Type
Journal Article
Abstract
This paper proposes a method of automatic facial reconstruction from a facial image partially corrupted by noise or occlusion. There are two key features of this method; the one is the automatic extraction of the correspondences between the corrupted input face and reference face without additional manual tasks; the other is the reconstruction of the complete facial information from corrupted facial information based on these correspondences. In this paper, we propose a non-iterative approach that can match multiple feature points in order to obtain the correspondences between the input image and the reference face. Furthermore, shape and texture of the whole face are reconstructed by SVDD (Support Vector Data Description) from the partial correspondences obtained by matching. The experimental results of facial image reconstructions show that the proposed SVDD-based reconstruction method gives smaller reconstruction errors for a facial image corrupted by Gaussian noise and occlusion than the existing linear projection reconstruction method with a regulation factor. The proposed method also reduces the mean intensity error per pixel by an average of 35%, especially in the reconstruction of a facial image corrupted by Gaussian noise.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.