Journal Article
Tag Anti-Collision Algorithms in Passive and Semi-passive RFID Systems -Part II : CHI Algorithm and Hybrid Q Algorithm by using Chebyshev's Inequality-
Both EPCglobal Generation-2 (Gen2) for passive RFID systems and Intelleflex for semi-passive RFID systems use probabilistic slotted ALOHA with Q algorithm, which is a kind of dynamic framed slotted ALOHA (DFSA), as the tag anti-collision algorithm. A better tag anti-collision algorithm can reduce collisions so as to increase the efficiency of tag identification. In this paper, we introduce and analyze the estimation methods of the number of slots and tags for DFSA. To increase the efficiency of tag identification, we propose two new tag anti-collision algorithms, which are Chebyshev's inequality (CHI) algorithm and hybrid Q algorithm, and compare them with the conventional Q algorithm and adaptive adjustable framed Q (AAFQ) algorithm, which is mentioned in Part I. The simulation results show that AAFQ performs the best in Gen2 scenario. However, in Intelleflex scenario the proposed hybrid Q algorithm is the best. That is, hybrid Q provides the minimum identification time, shows the more consistent collision ratio, and maximizes throughput and system efficiency in Intelleflex scenario.
KSP Keywords
Anti-collision algorithm, Chebyshev's inequality, Collision Ratio, Estimation method, Framed slotted ALOHA, Passive RFID, Q algorithm, RFID system, System Efficiency, Tag anti-collision, Tag identification
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.