09MS3500, Development of Full 3D Reconstruction Technology for Broadcasting Communication Fusion,
Koo Bonki
Abstract
Shape is one of the useful information for object detection. The human visual system can often recognize objects based on the 2-D outline shape alone. In this paper, we address the challenging problem of shape matching in the presence of complex background clutter and occlusion. To this end, we propose a graph-based approach for shape matching. Unlike prior methods which measure the shape similarity without considering the relation among edge pixels, our approach uses the connectivity of edge pixels by generating a graph. A group of connected edge pixels, which is represented by an "edge"of the graph, is considered together and their similarity cost is defined for the "edge"weight by explicit comparison with the corresponding template part. This approach provides the key advantage of reducing ambiguity even in the presence of background clutter and occlusion. The optimization is performed by means of a graph-based dynamic algorithm. The robustness of our method is demonstrated for several examples including long video sequences. Finally, we applied our algorithm to our grasping robot system by providing the object information in the form of prompt hand-drawn templates.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.