We demonstrate a new process for fabricating a hybrid elastomeric polydimethylsiloxane (PDMS) substrate, which can provide a high ratio (as large as ~50) of the elastic modulus between the active device region and the interconnect area, as well as a locally tailored surface profile for each region. For this process, a Si master mold with a dual surface profile is prepared, where locally flat regions are distributed within a wavy-surfaced area. The stiffer elastomeric islands for active devices are formed on the flat regions by photolithography of a photo-patternable and hard PDMS layer (E ~ 160 MPa), over which a soft PDMS layer (E ~ 2 to 3 MPa) is casted. By releasing the whole PDMS layer from the mold, a hybrid silicone substrate with stiff and flat islands embedded within a soft and wavy matrix is obtained. In this hybrid structure, active devices located on the stiff regions can provide high reliability under stretched conditions, while most strain is accommodated by wavy interconnects within the soft area. Such beneficial effects are demonstrated by organic thin film transistors produced on the hybrid substrate.
KSP Keywords
Active devices, High Reliability, Hybrid structure, Hybrid substrate, Master mold, Organic thin-film transistors, Surface profile, Thin-Film Transistor(TFT), each region, elastic modulus, elastomeric substrate
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.