In the field of augmented reality technologies, commercial optical see-through-type wearable displays have difficulty providing immersive visual experiences, because users perceive different depths between virtual views on display surfaces and see-through views to the real world. Many cases of augmented reality applications have adopted eyeglasses-type displays (EGDs) for visualizing simple 2D information, or video see-through-type displays for minimizing virtual- and real-scene mismatch errors. In this paper, we introduce an innovative optical see-throughtype wearable display hardware, called an EGD. In contrast to common head-mounted displays, which are intended for a wide field of view, our EGD provides more comfortable visual feedback at close range. Users of an EGD device can accurately manipulate close-range virtual objects and expand their view to distant real environments. To verify the feasibility of the EGD technology, subjectbased experiments and analysis are performed. The analysis results and EGD-related application examples show that EGD is useful for visually expanding immersive 3D augmented environments consisting of multiple displays.
KSP Keywords
Augmented environments, Augmented reality(AR), Augmented reality application, Augmented reality technology, Augmented system, Close range, Different depths, Field of View(FoV), Head mounted displays(HMD), Mismatch errors, Optical See-Through
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.