With the advancement of information communication technology, people can access many useful services for human-centric computing. Although this advancement increases work efficiency and provides greater convenience to people, advanced security threats such as the Advanced Persistent Threat (APT) attack have been continuously increasing. Technical measures for protecting against an APT attack are desperately needed because APT attacks, such as the 3.20 Cyber Terror and SK Communications hacking incident, have occurred repeatedly and cause considerable damage, socially and economically. Moreover, there are limitations of the existing security devices designed to cope with APT attacks that continue persistently using zero-day malware. For this reason, we propose a malware detection method based on the behavior information of a process on the host PC. Our proposal overcomes the limitations of the existing signature-based intrusion detection systems. First, we defined 39 characteristics for demarcating malware from benign programs and collected 8.7 million characteristic parameter events when malware and benign programs were executed in a virtual-machine environment. Further, when an executable program is running on a host PC, we present the behavior information as an 83-dimensional vector by reconstructing the frequency of each characteristic parameter's occurrence according to the process ID for the collected characteristic parameter data. It is possible to present more accurate behavior information by including the frequency of characteristic parameter events occurring in child processes. We use a C4.5 decision tree algorithm to detect malware in the database. The results of our proposed method show a 2.0혻% false-negative detection rate and a 5.8혻% false-positive detection rate.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.