ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article 워드 임베딩과 품사 태깅을 이용한 클래스 언어모델 연구
Cited - time in scopus Share share facebook twitter linkedin kakaostory
Authors
정의석, 박전규
Issue Date
2016-07
Citation
정보과학회 컴퓨팅의 실제 논문지, v.22, no.7, pp.315-319
ISSN
2383-6318
Publisher
한국정보과학회 (KIISE)
Language
Korean
Type
Journal Article
DOI
https://dx.doi.org/10.5626/KTCP.2016.22.7.315
Abstract
음성인식 성능 개선을 위한 언어모델의 기술적 진보는 최근 심층 신경망을 기반으로 한 접근방법으로 한 단계 더 진보한 모양새다. 그러나 연구되고 있는 심층 신경망 기반 언어모델은 대부분 음성인식 이후 리스코링 단계에서 적용할 수 있는 한계를 지닌다. 또한 대규모 어휘에 대한 심층 신경망 접근방법은 아직 시간이 필요하다고 본다. 따라서 본 논문은 심층 신경망 언어 모델의 단순화된 형태인 워드임베딩 기술을 음성인식 후처리가 아닌 기반 N-gram모델에 바로 적용할 수 있는 접근 방법을 찾는다. 클래스 언어모델이 한 접근 방법이 될 수 있는데, 본 연구에서는 워드 임베딩을 우선 구축하고, 해당 어휘별벡터 정보를 클러스터링하여 클래스 언어모델을 구축 방법을 제시한다. 이를 기존 어휘기반 N-gram 모델에 통합한 후, 언어모델의 성능 개선 여부를 확인한다. 클래스 언어모델의 타당성 검증을 위해 다양한 클래스 개수의 언어모델 실험과 RNN LM과의 비교 결과를 검토한 후, 모든 언어모델의 성능 개선을 보장하는 품사 부착 언어모델 생성 방법을 제안한다.
KSP Keywords
n-Gram