In this paper, we develop a self-organizing mechanism for spectrum breathing and user association in cellular networks employing frequency reuse patterns. Specifically, our focus is on flow-level cell load balancing under spatially inhomogeneous traffic distributions. Our work adaptively changes the spectrum bandwidth of each base station (BS) so that spectrums of BSs breathe in and out in order to balance the loads of BSs. Spectrum breathing is further combined with delay-optimal user association for better load balancing. Our problem is challenging because the problem is not a convex optimization. To tackle the difficulty, we decouple spectrum breathing and user association and propose an iterative algorithm that always converges to a fixed point, which is possibly an optimal solution. We show that spectrum breathing dominates a family of 慣-optimal user association in cell load balancing. Surprisingly, the flow-level delay performance under spectrum breathing gets even better as spatial traffic distribution becomes unbalanced, which is not the case of 慣-optimal user association. Our extensive simulations confirm that spectrum breathing significantly improves the system performances: decreasing the delay more than 10 times or increasing the admittable traffic load by more than 125%. Furthermore, spectrum breathing outperforms full frequency reuse when spatial traffic distribution is inhomogeneous.
KSP Keywords
Cell Load Balancing, Cellular networks, Convex Optimization, Fixed-point, Optimal Solution, Self-organizing Mechanism, Traffic Load, Wireless network, base station(BS), delay performance, full frequency reuse
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.